Comparative Analysis of Threshold Acceptance Algorithm, Simulated Annealing Algorithm and Genetic Algorithm for Function Optimization

نویسندگان

  • G. R. Kulkarni
  • Tejas P. Patalia
چکیده

The goal of this study of threshold acceptance algorithm (TA), simulated annealing algorithm (SA) and genetic algorithm (GA) is to determine strength of Genetic Algorithm over other algorithm. It gives a clear idea of how genetic algorithm works. It gives the idea of various sub methods used in genetic algorithm to improve the results and outcome. Basically genetic algorithm and all traditional heuristic methods are used for optimization. Optimization problems are class NP complete problems. Genetic algorithm can be viewed as an optimization technique which exploits random search within a defined search space to solve a problem by some intelligence ideas of nature. In this work we have done Comparative analysis of Threshold Acceptance Algorithm, Simulated Annealing Algorithm and Genetic Algorithm by considering different test functions and its constraints to minimize the test functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A cloud-based simulated annealing algorithm for order acceptance problem with weighted tardiness penalties in permutation flow shop scheduling

Make-to-order is a production strategy in which manufacturing starts only after a customer's order is received; in other words, it is a pull-type supply chain operation since manufacturing is carried out as soon as the demand is confirmed. This paper studies the order acceptance problem with weighted tardiness penalties in permutation flow shop scheduling with MTO production strategy, the objec...

متن کامل

A New Algorithm for Optimum Voltage and Reactive Power Control for Minimizing Transmission Lines Losses

Reactive power dispatch for voltage profile modification has been of interest Abstract to powerr utilities. Usually local bus voltages can be altered by changing generator voltages, reactive shunts, ULTC transformers and SVCs. Determination of optimum values for control parameters, however, is not simple for modern power system networks. Heuristic and rather intelligent algorithms have to be so...

متن کامل

Genetic Algorithm and Simulated Annealing for Redundancy Allocation Problem with Cold-standby Strategy

This paper presents a new mathematical model for a redundancyallocation problem (RAP) withcold-standby redundancy strategy and multiple component choices.The applications of the proposed model arecommon in electrical power, transformation,telecommunication systems,etc.Manystudies have concentrated onone type of time-to-failure, butin thispaper, two components of time-to-failures which follow hy...

متن کامل

A Comparative Study of Four Evolutionary Algorithms for Economic and Economic-Statistical Designs of MEWMA Control Charts

The multivariate exponentially weighted moving average (MEWMA) control chart is one of the best statistical control chart that are usually used to detect simultaneous small deviations on the mean of more than one cross-correlated quality characteristics. The economic design of MEWMA control charts involves solving a combinatorial optimization model that is composed of a nonlinear cost function ...

متن کامل

An Integrated Model of Project Scheduling and Material Ordering: A Hybrid Simulated Annealing and Genetic Algorithm

This study aims to deal with a more realistic combined problem of project scheduling and material ordering. The goal is to minimize the total material holding and ordering costs by determining the starting time of activities along with material ordering schedules subject to some constraints. The problem is first mathematically modelled. Then a hybrid simulated annealing and genetic algorithm is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012